- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
Scientists have discovered “dark oxygen” being produced in the deep ocean, apparently by lumps of metal on the seafloor.
About half the oxygen we breathe comes from the ocean. But, before this discovery, it was understood that it was made by marine plants photosynthesising - something that requires sunlight.
Here, at depths of 5km, where no sunlight can penetrate, the oxygen appears to be produced by naturally occurring metallic “nodules” which split seawater - H2O - into hydrogen and oxygen.
Several mining companies have plans to collect these nodules, which marine scientists fear could disrupt the newly discovered process - and damage any marine life that depends on the oxygen they make.
I just learned of these lumps of metal, and I already care more about them than any CEO.
Dark thoughts get behind me, wait a second. We have metals on land. Research is needed to determine if we can magnify this process.
We can, it’s just electrolysis. All you need is electricity, and these nodules are simply batteries.
We’re not short of oxygen up here though, so it’s not terribly useful. We could get hydrogen that way, which would be greener than the way we get it at industrial scale now, but it would be way more expensive
We’re not short of oxygen up here though …
How do you know that before further studies can verify how much the nodules are contributing to the earth’s oxygen levels?
I know that for two reasons: first, we already know that oxygen concentration in the deep ocean is generally pretty low compared to the surface, and second we can already account for the general composition of our atmosphere. There just isn’t a big chunk of mystery oxygen who’s source we can’t identify.
While it’s not impossible that we’re mistaken and a bunch of it is coming from somewhere other than where we expect, it’s sufficiently unlikely that I’m comfortable making such statements I told and unless presented with evidence to the contrary.
The question posed was not what the impact would be if this source of oxygen were mined, and thus no longer contributing oxygen. The question was whether or not we could replicate this on the surface as a source of oxygen.
The answer is that it simply is not necessary. We have plenty of oxygen, what we need are means to sink CO2, which electrolysis does not do.
Electrolysis I get. These never ending ‘batteries’ though ???
They should last indefinitely so long as the process of accretion which created these nodules keeps going. A battery becomes drained when the chemical interaction between the two metals uses up all the available metal, which happens quite fast in our modern batteries because we’ve designed them that way.
We’ve made them powerful and cheap by using relatively small amounts of each metal, spread thin and sandwiched together. The downside is that those things films of metal get used up fast.
These nodules, meanwhile, are lumps of metal. They won’t produce lots of power all at once, but they can generate small amounts for ages, and so long as they grow faster than the metal gets used up (it doesn’t actually go anywhere, it just changes chemically) they’ll keep going
Seems monumental, I’m curious about more specific properties of the metal.
Seems like a valuable resource from a video game that charges science fiction energy drives.
It’s funny the title is “defies knowledge of the deep ocean”, given how often it’s proven humans have so little knowledge of the deep ocean in the first place.
The article is being pretty hyperbolic. There’s no mystery here, this is just something which happens if you put two different metals together. It’s nothing more or less than a crude battery, just like the ancestors of the AA battery the article kept harping on about.
This discovery could be important for people studying the climate on very early Earth, people studying early life, and the ecology of the deep sea today.
That last one is particularly troubling, though. If this is widespread, then this might be a major source of what little oxygen is down there. If so, then taking those nodules away (like a lot of people are keen to do, since some of the metals they’re made of are valuable) could destroy an entire ecosystem.
More research is required
Do you understand how the metal becomes a battery and how it can work consistently to split hydrogen and oxygen?
How it’s naturally charged and recharged?
I would expect it to work like a galvanic anode.
What seems to be the original study:
https://www.nature.com/articles/s41561-024-01480-8#Sec14
TLDR, they aren’t sure where the (small amounts) of oxygen comes from. And while the article is full of numbers, the section on measuring voltage from these lumps does not contain any. The raw data suggests (to me as a non expert) that the voltages measured are way too low for electrolysis of water (which requires >1.5V)
Based on what I understand about life, it’s probably microscopic extremophiles that decided hell was a good place to start reproducing.
Let’s fuck
Any random extremophile when faced with an unwelcoming environment
I like that theory
Could it be a new catalyst, that lets the process happen slowly over time, at lower voltages?
More guesses after I read the thingy
This is the best summary I could come up with:
“I first saw this in 2013 - an enormous amount of oxygen being produced at the seafloor in complete darkness,” explains lead researcher Prof Andrew Sweetman from the Scottish Association for Marine Science.
And because these nodules contain metals like lithium, cobalt and copper - all of which are needed to make batteries - many mining companies are developing technology to collect them and bring them to the surface.
And his discovery, published in the journal Nature Geoscience, raises new concerns about the risks of proposed deep-sea mining ventures.
The scientists worked out that the metal nodules are able to make oxygen precisely because they act like batteries.“If you put a battery into seawater, it starts fizzing,” explained Prof Sweetman.
And this discovery suggests that the nodules themselves could be providing the oxygen to support life there.Prof Murray Roberts, a marine biologist from the Univerisity of Edinburgh is one of the scientists who signed the seabed mining petition.
“There’s already overwhelming evidence that strip mining deep-sea nodule fields will destroy ecosystems we barely understand,” he told BBC News.“Because these fields cover such huge areas of our planet it would be crazy to press ahead with deep-sea mining knowing they may be a significant source of oxygen production.”Prof Sweetman added: “I don’t see this study as something that will put an end to mining.“[But] we need to explore it in greater detail and we need to use this information and the data we gather in future if we are going to go into the deep ocean and mine it in the most environmentally friendly way possible.”
The original article contains 793 words, the summary contains 265 words. Saved 67%. I’m a bot and I’m open source!
I just learned about this from John Oliver. The episode came out about a month ago. Doesn’t sound like a great idea to go after them, of course…
His take is spot on. It’s totally worth watching and thanks for sharing.
Scientists have discovered…
Several mining companies have plans to collect these…A tale as old as
timesciencenaturally occurring metallic “nodules” which split seawater - H2O - into hydrogen and oxygen.
Where have I heard this before? Oh yes
“Several mining companies have plans to collect these nodules”
Of course there are. This why we can’t nice things.
Nestlé is already planning to monopolize oxygen.
Color me deeply skeptical that these seafloor “batteries” have not been depleted. Extraordinary claims require extraordinary evidence. We need to overcome the possibility of faulty measurements or other sources.
Since the paper was just published yesterday I’m unsure why you would think the nodules are depleted.